
12/08/2019

1

Crash Course in Neo4j
Lju Lazarevic lju@neoj4.com

@ellazal
Erik Nygren erik.nygren@neo4j.com

Agenda
Part 1:

• Graph databases overview and their application

Part 2:
• Neo4j under the hood
• Introduction to graph data modelling
• Introduction to Cypher
• Overview of Neo4j Graph Algorithms

Part 3:
• Hands-on session
• Getting data in and out
• Neo4j and Apache Spark

12/08/2019

2

• Do ask questions!
• (we might have to park some if we get time-constrained)

• Do have a go!
• Group questions
• Hands-on exercises

• Do have a look at the recommended reading!
• We’re only going to scrape the surface today

The “Rules”

Crash Course in Neo4j
Part 1: Graph database
overview and applications

12/08/2019

3

5

What is a graph?

A graph is set of discrete objects, each of which has some set of
relationships with the other objects

Seven Bridges of Konigsberg problem. Leonhard Euler, 1735

6

Anything can be a graph

the Internet a water molecule

H

O

H

12/08/2019

4

Node (Vertex)
● The main data element from which graphs are constructed

A node without relationships is permitted. A relationship without nodes is not.
● A waypoint along a traversal route

7

Graph components

Jane car

8

Graph components

Node (Vertex)
● The main data element from which graphs are constructed

A node without relationships is permitted. A relationship without nodes is not.
● A waypoint along a traversal route

Relationship (Edge)
● A link between two nodes. May contain:

○ Direction
○ Metadata; e.g. weight or relationship type

Jane carOWNS

12/08/2019

5

9

Label property graph database

Node (Vertex)
Relationship (Edge)

OWNS

10

Label property graph database

Node (Vertex)
Relationship (Edge)

:Person :CarOWNS

Label
● Define node category (optional)

12/08/2019

6

11

Label property graph database

Node (Vertex)
Relationship (Edge)

:Person :CarOWNS

Label
● Define node category (optional)
● Can have more than one

:Asset

12

Node (Vertex)
Relationship (Edge)

:Person :CarOWNS

Label
● Define node category (optional)
● Can have more than one
Properties
● Enrich a node or relationship
● No need for nulls!

name: Jane make: Volvo
model: V60

since: 2018

:Asset

Label property graph database

12/08/2019

7

• Technology works with a representation of reality
• Reality is about things being connected to other things
• Reality seldom comes in discrete tables
• Reality does not stop at the border of a data silo
• A graph is a better approximation of reality !

Why do we need graphs ?

12/08/2019

8

Customer to claims policy information
Table 1

Customer

CustID Customer Address Email Alternate

1 John Doe 23 Links Lane john@gmail.com

2 Joe Bloggs 1 Guildford high St jbloggs@gmail.com

3 Susan Smith 4 Oak Street
London

ssmith@gmail.com

4

Table 1-1

Policy

PolicyID CustID

1234 1

5678 1

….. ….

5588 99

Table 1-3

LineItem

PolicyID Description Term Date ClaimsID

1234 House Insurance 15th March 2018 1

5678 Car Insurance 21st Sept 2018 2

…. …

5588 765 18th Dec 2018 999

Table 1-2

Claims

ClaimsID Description Date of Claim Result

1 Replace Television 8th January 2017 Paid in full

2 Traffic Accident 27 Sept 2016 Paid in full

…

987 Roof Leaking 25th April 2012 Dispute

What might this look like in a graph?

12/08/2019

9

Follow the flow - buying trainers

1
8

The Panama
papers data
model...

...and dealing with entity
resolution

Finding fraud

12/08/2019

10

Also:
- Swiss leaks
- Paradise papers
- West African leaks

Finding fraud rings

12/08/2019

11

NASA Knowledge graphs

“using Neo4j someone from our
Orion project found information

from the Apollo project that
prevented an issue, saving well over
two years of work and one million

dollars of taxpayer funds”

Friends of friends

...or co-actors of co-actors

12/08/2019

12

Graphs are everywhere...

Impact analysis Logistics and routing Recommendations

Access control Fraud analysis Social network

A couple of options:
• Neo4j Desktop - preferred

• neo4j.com/download
• Sandbox - no install option

• neo4j.com/sandbox-v2
• We will use the Blank Sandbox option
• Will not have options for APOC or Graph Algorithms

Set-up support during the first break

Getting set up

12/08/2019

13

Crash Course in Neo4j
Part 2: Neo4j under the
hood, Data Modelling and
Cypher

Neo4j is a database

26

12/08/2019

14

Neo4j is a graph database

27

28

Language and driver support
• Cypher to access the database
• Server-side extensions to access the database
• Out-of-the-box drivers via bolt protocol:

• Java
• JavaScript
• Python
• C#
• Go

• Neo4j community contributions for other languages

12/08/2019

15

Libraries and tools
Out-of-the-box libraries:
• APOC
• Graph Algorithms
• GraphQL

Tools:
• Browser
• Desktop
• Bloom
• ETL

The Neo4j community has also made many contributions!

30

Index-free adjacency in two minutes

My house Anne’s house

12/08/2019

16

31

Index-free adjacency in two minutes

My house Anne’s house

12/08/2019

17

In practice, what does this mean?

• How are Jane and Anne
connected?

• Might John and David know
each other?

• Who went to Grange Hill?

34

The graph data modeling and
implementation process

12/08/2019

18

• If it’s a verb, it’s probably a relationship
• If it’s a noun, it’s probably node label
• If it’s an adverb/adjective, it’s probably a property

Some basic graph modelling rules...

NounNoun

Verb

AdjectiveAdjective

Adverb

I am looking for
fraud rings….

I am looking for
recommendations….

12/08/2019

19

Modelling emails

Your turn:
• Think about what happens during email exchanges
• How might we model this as a graph?

Some hints:
• Think about what questions we might ask
• ‘Generate’ a tiny data set
• Identify what the elements might be

Arrows:
• www.apcjones.com/arrows/

38

Domain question for our model

12/08/2019

20

39

Initial data model with sample data

Do we need to change the model?

40

Question: What are the airports and flight
information for flight number 1016 for
airline WN?

Why are we changing the model?
● No indexes on relationship properties
● We have to scan every single Airport

node!

12/08/2019

21

Steps: Refactoring the model

41

What is Cypher?

42

• Declarative query language
• Focuses on what, not how

• Uses keywords such as
MATCH, WHERE, CREATE

• Runs on the database server
• ASCII art to represent nodes

and relationships
• () - Nodes
• [] - Relationships
• {} - Properties

Person Person

Location
Residence

MARRIED

LIVES_AT

LIVES_AT

OWNS

12/08/2019

22

Use MATCH to retrieve nodes
//Match all nodes

MATCH (n)

RETURN n;

//Match all nodes with a Person label

MATCH (n:Person)

RETURN n;

//Match all nodes with a Person label and property name is ‘Tom Hanks’

MATCH (n:Person {name: ‘Tom Hanks’})

RETURN n;

//Return nodes with label Person and name property is ‘Tom Hanks’ - Inline

MATCH (p:Person {name: ‘Tom Hanks’}) //Only works with exact matches

RETURN p;

//Return nodes with label Person and name property equals ‘Tom Hanks’

MATCH (p:Person)

WHERE p.name = ‘Tom Hanks’

RETURN p;

//Return nodes with label Movie, released property is between 1991 and 1999

MATCH (m:Movie)

WHERE m.released > 1990 AND m.released < 2000

RETURN m;

Use MATCH and properties to retrieve nodes

12/08/2019

23

//Find all the movies Tom Hanks acted in

MATCH (:Person {name:’Tom Hanks’})-[:ACTED_IN]->(m:Movie)

RETURN m.title;

//Find all the movies Tom Hanks directed and order by latest movie

MATCH (:Person {name:’Tom Hanks’})-[:DIRECTED]->(m:Movie)

RETURN m.title, m.release ORDER BY m.release DESC;

//Find all of the co-actors Tom Hanks has ever worked with

MATCH (:Person {name:’Tom Hanks’})-->(:Movie)<-[:ACTED_IN]-(coActor:Person)

RETURN coActor.name;

Extending the MATCH

//Find nodes with an ACTED_IN relationship

MATCH (p)-[:ACTED_IN]->()

RETURN p

//Find Person nodes with an ACTED_IN or DIRECTED_IN relationship

MATCH (p:Person)-[:ACTED_IN|DIRECTED]->()

RETURN p

//Find Person nodes who don’t have an ACTED_IN relationship

MATCH (p:Person)

WHERE NOT (p)-[:ACTED_IN]->()

RETURN p

Use relationships to retrieve results

12/08/2019

24

//Find nodes up to 2 hops from Tom Hanks

MATCH path = (:Person {name:’Tom Hanks’})-[*0..2]-(:Person)

RETURN path;

//Find the shortest path between Tom Hanks and Tom Cruise

MATCH path = shortestPath((hanks:Person {name:’Tom Hanks’})-[*]-
(cruise:Person {name:’Tom Cruise’}))

RETURN path;

WARNING!

Be very careful with unbounded, undirected relationship traversals!

Variable relationship hops

//Find me all actors that have acted and directed movies

MATCH (p:Person)-[:ACTED_IN]->(), (p)-[:DIRECTED_IN]->()

RETURN p.name;

//Find all reviewers of actor directors and their movies

MATCH (a:Person)-[:ACTED_IN|DIRECTED]->(m:Movie)<-[:REVIEWED]-(r:Person)

RETURN m.title AS Title,

COLLECT(a.name) AS `Actor/Director`,

COLLECT(r.name) AS Reviewer;

//Find all Movies and reviewers with ratings less than 50

MATCH (m:Movie)<-[r:REVIEWED]-(p:Person) WHERE r.rating < 50

RETURN m.title AS Title, r.rating AS Rating, p.name AS Reviewer;

Expanding patterns, collections and counts

12/08/2019

25

//Create a person node called ‘Tom Hanks’

CREATE (p:Person {name:’Tom Hanks’});

//Create an ACTED_IN relationship between ‘Tom Hanks’ and ‘Apollo 13’

MATCH (p:Person {name:’Tom Hanks’}), (m:Movie {title:’Apollo 13’})

CREATE (p)-[:ACTED_IN]->(m);

//Create the pattern of ‘Tom Hanks’ ACTED_IN ‘Apollo 13’

//This will create the entire pattern, nodes and all!

CREATE (:Person {name:’Tom Hanks’)-[:ACTED_IN]->(:Movie {title:’Apollo 13});

CREATE

• Similar to an upsert
• If the pattern doesn’t exist, it will be created
• If the pattern does exist, it will be MATCHed

• Good MERGE practice
• Only merge on the unique property
• Always set other properties after the initial MERGE

MERGE

12/08/2019

26

//Merge a person node called ‘Tom Hanks’

MERGE (p:Person {name:’Tom Hanks’});

//MERGE an ACTED_IN relationship between ‘Tom Hanks’ and ‘Apollo 13’

MATCH (p:Person {name:’Tom Hanks’}), (m:Movie {title:’Apollo 13’})

MERGE (p)-[:ACTED_IN]->(m);

//MERGE the pattern of ‘Tom Hanks’ ACTED_IN ‘Apollo 13’

//If the identical pattern below doesn’t exist, it will be created!

MERGE (:Person {name:’Tom Hanks’})-[:ACTED_IN]->(:Movie {title:’Apollo 13});

MERGE

//If creating Person node ‘Lju’, set favourite colour to ‘Red’

MERGE (lju:Person {name:’Lju’})

ON CREATE SET lju.favColour = ‘Red’;

//If Person node ‘Lju’ exists, update favourite food to ‘Chocolate’

MERGE (lju:Person {name:’Lju’})

ON MATCH SET lju.favFood = ‘Chocolate’;

MERGE

12/08/2019

27

Case sensitive:
• Node labels
• Relationship types
• Property keys
• Property values (where relevant)
• Function and procedures

Not case sensitive:
• Cypher key words (e.g. MATCH, NOT, ORDER BY, etc.)

Cypher can be case-sensitive

Examine the data model

54

CALL db.schema

12/08/2019

28

• Match a Person called John Doe

• Find FRIENDS_OF John Doe

• COUNT John Doe’s direct acquaintances

Your turn - Cypher

• Match a Person called John Doe
MATCH (p:Person {name: “John Doe”})

RETURN p

• Find FRIENDS_OF John Doe
MATCH (:Person {name: “John Doe”})-[:FRIENDS_OF]-(friend:Person)

RETURN friend

• COUNT John Doe’s direct acquaintances
MATCH (:Person {name: “John Doe”})--(acq:Person)

RETURN COUNT(acq)

Your turn - Cypher

12/08/2019

29

Graph Algorithms

Pathfinding
& Search

Centrality /
Importance

Community
Detection

Link
Prediction

Finds optimal paths
or evaluates route

availability and quality

Determines the
importance of distinct
nodes in the network

Detects group
clustering or partition

options

Evaluates how
alike nodes are

Estimates the likelihood
of nodes forming a
future relationship

Similarity

Neo4j Graph Algorithms

• Parallel Breadth First Search*
• Parallel Depth First Search
• Shortest Path*
• Single-Source Shortest Path
• All Pairs Shortest Path
• Minimum Spanning Tree
• A* Shortest Path
• Yen’s K Shortest Path
• K-Spanning Tree (MST)
• Random Walk

• Degree Centrality
• Closeness Centrality
• CC Variations: Harmonic, Dangalchev,

Wasserman & Faust
• Betweenness Centrality
• Approximate Betweenness Centrality
• PageRank*
• Personalized PageRank
• ArticleRank
• Eigenvector Centrality

• Triangle Count*
• Clustering Coefficients
• Connected Components (Union Find)*
• Strongly Connected Components*
• Label Propagation*
• Louvain Modularity – 1 Step & Multi-Step
• Balanced Triad (identification)

• Euclidean Distance
• Cosine Similarity
• Jaccard Similarity
• Overlap Similarity
• Pearson Similarity

Pathfinding
& Search

Centrality /
Importance

Community
Detection

Similarity

neo4j.com/docs/
graph-algorithms/current/

Link
Prediction

• Adamic Adar
• Common Neighbors
• Preferential Attachment
• Resource Allocations
• Same Community
• Total Neighbors* Available in GraphFrames

12/08/2019

30

PageRank algorithm

• Use when
• Anytime you’re looking for broad

influence over a network
• Many domain specific variations for

differing analysis, e.g. Personalized
PageRank for personalized
recommendations

• Examples:
• Twitter Recommendations
• Fraud Detection

Louvain modularity

• Use when
• Community Detection in large networks
• Uncover hierarchical structures in data

• Examples
• Money Laundering
• Protein-Protein-Interactions

12/08/2019

31

Jaccard similarity

• Use when
• Computing pair-wise similarities
• Accommodates vectors of different lengths

• Examples
• Recommendations
• Disambiguation

Crash Course in Neo4j
Part 3: Getting data in and
out, graph algorithms and
connecting to Spark

12/08/2019

32

You turn - the Movie Database

PageRank the movie db (Neo4j Desktop only - graph algorithms plugin installed)
(Copy and paste from: tinyurl.com/y5b6qnhy)

CALL algo.pageRank.stream(

'MATCH (p:Person) RETURN id(p) AS id',

'MATCH (p1:Person)-->()<--(p2:Person)

RETURN distinct id(p1) AS source, id(p2) AS target',

{graph:'cypher'})

YIELD nodeId, score

RETURN algo.asNode(nodeId).name AS name, score ORDER BY score DESC

What happens if you select the pattern to ACTED_IN relationship only?

Your turn - a little bit extra...

12/08/2019

33

Loading data - what options do we have?

a bit
higher

effort

fast faster speed

$./neo4j-admin import

LOAD CSV
low

Procedures

APOC

BatchInserter API

Driver/Bolt

• Probably the simplest method

• Initial import or update

• Database is online during import i.e. transactional!

• Create indexes upfront

• The cluster is being synchronized automatically

Cypher and LOAD CSV

12/08/2019

34

Cypher and load CSV import approach

• Iterate / batching

• Plenty of procedures and functions

• GraphML

• JDBC

• .. and others (e.g. XML, JSON, …)

Cypher and APOC

12/08/2019

35

• Extension of the Neo4j server

• Will be deployed as .jar file to the plugins folder

• Database is online during import, transactional!

• Make use of one of our APIs for graph processing

=> Performance

• Fine grained user/role concept

• The cluster is being synchronized automatically

Procedures

Procedure import approach

12/08/2019

36

• Drivers for many languages available

• .NET, Java, JavaScript, Python, Go are officially supported

• Transactional processing

• Batching

• Parallelization possible

Driver via Bolt

Bolt import approach

12/08/2019

37

$./bin/neo4j-admin import

• Fastest method (w.r.t. writes/second)

• Initial import; a new database is being created

• Database is offline during import

• No need to create indexes in advance

• The cluster needs to be synchronized after the import

Neo4j-admin import import approach

12/08/2019

38

Graphs in Spark and Neo4j

Spark is an immutable data processing engine
• Distributable computational analysis over massive data sets
• Does not natively represent relationships
• Analytical operations

Neo4j is a native transactional CRUD database
• Has optimized in-process parallel graph algorithms
• Uses native graph data representation
• Real-time, transactional operations

Passing data between Neo4j and Spark

• Discussed data loading approaches, these can be extended to
Spark:
• Flat file import/export via neo4j-admin import
• Use of the drivers
• Use of procedures
• And so forth

• Neo4j - Spark connector
• Neo4j Morpheus

12/08/2019

39

Neo4j Spark Connector

• Community contribution
• Uses the binary Bolt protocol
• Offers Spark 2.0 APIs for:

• RDD
• DataFrames
• GraphX
• GraphFrames

https://github.com/neo4j-contrib/neo4j-spark-connector

Morpheus: SQL + Cypher in one session

Graphs and tables are both useful data models
• Finding paths and subgraphs, and transforming graphs
• Viewing, aggregating and ordering values

The Morpheus project parallels Spark SQL

• PropertyGraph type (composed of DataFrames)
• Catalog of graph data sources, named graphs, views,
• Cypher query language

A CypherSession adds graphs to a SparkSession

12/08/2019

40

What is Morpheus used for?

• Data integration
• Integrate (non-)graphy data from multiple, heterogeneous

data sources into one or more property graphs
• Distributed Cypher execution

• OLAP-style graph analytics
• Data science

• Integration with other Spark libraries
• Feature extraction using Neo4j Graph Algorithms

Morpheus creates Spark Graphs ...

PROPERTY
GRAPH

composing
DataFrames

Hive, DF, JDBC
TABLES

SUB-
GRAPH

FS snapshot

Morpheus
SOURCES

12/08/2019

41

… wrangles Spark Graphs ...

DataFrame
Table Result

Cypher
QUERY

Property
Graph Result

Property
Graph Cypher

QUERY

Cypher
QUERY

Property
Graph Result

DataFrame
Driving Table

… analyses graphs in Spark and Neo4j ...

GRAPH
ALGOS

ANALYSIS
toolsets

DataFrame DataFrame

Property
Graph

Property
Graph

12/08/2019

42

… and stores Spark Graphs

Morpheus
STORE

SUBGRAPH

FS snapshot

Property
Graph

“Tables for Labels”

• In Morpheus, PropertyGraphs are represented by
• Node Tables and Relationship Tables

• Tables are represented by DataFrames
• Require a fixed schema

• Property Graphs have a Graph Type
• Node and relationship types that occur in the graph
• Node and relationship properties and their data type

Property Graph

Node Tables

Rel. Tables

Graph Type

12/08/2019

43

“Tables for Labels”

:Captain:Person
name: Morpheus

:Ship
name: Nebuchadnezzar

:COMMANDS

id name

0 Morpheus

id name

1 Nebuchadnezzar

id source target

0 0 1

:Captain:Person

:Ship

:COMMANDS

Graph Type {
:Captain:Person (

name: STRING
),
:Ship (

name: STRING
),
:COMMANDS

}

Constructing graphs
Input: a property graph
Output: a property graph

FROM GRAPH socialNetwork
MATCH (p:Person)-[:FRIEND*2]->(foaf)
WHERE NOT (p)-[:FRIEND]->(foaf)
CONSTRUCT

CREATE (p)-[:POSSIBLE_FRIEND]->(foaf)
RETURN GRAPH

Language features available in Morpheus

12/08/2019

44

Querying multiple graphs
Input: property graphs
Output: a property graph

FROM GRAPH socialNetwork
MATCH (p:Person)
FROM GRAPH products
MATCH (c:Customer)
WHERE p.email = c.email
CONSTRUCT ON socialNetwork, products

CREATE (p)-[:IS]->(c)
RETURN GRAPH

Language features available in Morpheus

Creating graph views
Input: property graphs
Output: a property graph

CATALOG CREATE VIEW youngFriends($inGraph){
FROM GRAPH $inGraph
MATCH (p1:Person)-[r]->(p2:Person)
WHERE p1.age < 25 AND p2.age < 25
CONSTRUCT
CREATE (p1)-[COPY OF r]->(p2)

RETURN GRAPH
}

Language features available in Morpheus

12/08/2019

45

Coming in
Spark 3.0!

Spark Project Improvement Proposal

• SPARK-25994 Spark Graph for Apache Spark 3.0
• Property Graphs, Cypher Queries, and Algorithms

• Cypher-compatible Property Graph type based on DataFrames
• Replaces GraphFrames querying with Cypher
• Reimplements GraphFrames/GraphX algos on the Property

Graph type
• Implementation is based on Spark SQL
• Provide Scala, Python and Java APIs

12/08/2019

46

Resources and further reading
Learn and try

• Neo4j getting started guide: neo4j.com/developer/get-started/
• Cypher reference card: neo4j.com/docs/cypher-refcard/current/
• Getting started sandboxes: neo4j.com/sandbox-v2/
• GraphGist: neo4j.com/graphgists/

Books
• Graph Databases book: neo4j.com/graph-databases-book/
• Graph Algorithms book: neo4j.com/graph-algorithms-book/

Other
• Neo4j Morpheus: github.com/opencypher/cypher-for-apache-spark
• Neo4j Labs: neo4j.com/labs/

Thank you!

Our contact details:
• lju@neo4j.com @ellazal

medium.com/@lju
• erik.nygren@neo4j.com linkedin.com/in/eriknygrens

