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What is Big Data?
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Big Data

Big data is the data characterized by 4 key attributes: volume, variety,
velocity and value.
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Big Data
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How To Store and Process Big Data?
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Problem

I Traditional platforms fail to show the expected performance.

I Need new systems to store and process large-scale data
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Scale Up vs. Scale Out

I Scale up or scale vertically: adding resources to a single node in a system.

I Scale out or scale horizontally: adding more nodes to a system.
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Big Data Stack
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Scala
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Scala

I Scala: scalable language

I A blend of object-oriented and functional programming

I Runs on the Java Virtual Machine

I Designed by Martin Odersky at EPFL
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Functional Programming Languages

I Functions are first-class citizens:
• Defined anywhere (including inside other functions).
• Passed as parameters to functions and returned as results.
• Operators to compose functions.
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Scala Variables

I Values: immutable

I Variables: mutable

var myVar: Int = 0

val myVal: Int = 1

I Scala data types:
• Boolean, Byte, Short, Char, Int, Long, Float, Double, String
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If ... Else

var x = 30;

if (x == 10) {

println("Value of X is 10");

} else if (x == 20) {

println("Value of X is 20");

} else {

println("This is else statement");

}
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Loop

var a = 0

var b = 0

for (a <- 1 to 3; b <- 1 until 3) {

println("Value of a: " + a + ", b: " + b )

}

// loop with collections

val numList = List(1, 2, 3, 4, 5, 6)

for (a <- numList) {

println("Value of a: " + a)

}
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Functions

def functionName([list of parameters]): [return type] = {

function body

return [expr]

}

def addInt(a: Int, b: Int): Int = {

var sum: Int = 0

sum = a + b

sum

}

println("Returned Value: " + addInt(5, 7))
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Anonymous Functions

I Lightweight syntax for defining functions.

var mul = (x: Int, y: Int) => x * y

println(mul(3, 4))
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Higher-Order Functions

def apply(f: Int => String, v: Int) = f(v)

def layout(x: Int) = "[" + x.toString() + "]"

println(apply(layout, 10))
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Collections (1/2)

I Array: fixed-size sequential collection of elements of the same type

val t = Array("zero", "one", "two")

val b = t(0) // b = zero

I List: sequential collection of elements of the same type

val t = List("zero", "one", "two")

val b = t(0) // b = zero

I Set: sequential collection of elements of the same type without duplicates

val t = Set("zero", "one", "two")

val t.contains("zero")
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Collections (2/2)

I Map: collection of key/value pairs

val m = Map(1 -> "sics", 2 -> "kth")

val b = m(1) // b = sics

I Tuple: A fixed number of items of different types together

val t = (1, "hello")

val b = t._1 // b = 1

val c = t._2 // c = hello
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Functional Combinators

I map: applies a function over each element in the list

val numbers = List(1, 2, 3, 4)

numbers.map(i => i * 2) // List(2, 4, 6, 8)

I flatten: it collapses one level of nested structure

List(List(1, 2), List(3, 4)).flatten // List(1, 2, 3, 4)

I flatMap: map + flatten

I foreach: it is like map but returns nothing
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Classes and Objects

class Calculator {

val brand: String = "HP"

def add(m: Int, n: Int): Int = m + n

}

val calc = new Calculator

calc.add(1, 2)

println(calc.brand)

object Test {

def main(args: Array[String]) { ... }

}

Test.main(null)

case class Calc(brand: String, model: String)
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Data Intensive Computing
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Word Count

I Count the number of times each distinct word appears in the file

I If the file fits in memory: words(doc.txt) | sort | uniq -c

I If not?
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Data-Parallel Processing (1/2)

I Parallelize the data and process.
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Data-Parallel Processing (2/2)

I MapReduce
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MapReduce Programming Model (1/2)

I words(doc.txt) | sort | uniq -c

I Sequentially read a lot of data.

I Map: extract something you care about.

I Group by key: sort and shuffle.

I Reduce: aggregate, summarize, filter or transform.

I Write the result.
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MapReduce Programming Model (2/2)

I map function: processes data and generates a set of intermediate key/value pairs.

I reduce function: merges all intermediate values associated with the same intermedi-
ate key.
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Word Count in MapReduce

I Consider doing a word count of the following file using MapReduce:

Hello World Bye World

Hello Hadoop Goodbye Hadoop

32 / 177



Word Count in MapReduce - map

I The map function reads in words one a time and outputs (word, 1) for each parsed
input word.

I The map function output is:

(Hello, 1)

(World, 1)

(Bye, 1)

(World, 1)

(Hello, 1)

(Hadoop, 1)

(Goodbye, 1)

(Hadoop, 1)
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Word Count in MapReduce - shuffle

I The shuffle phase between map and reduce phase creates a list of values associated
with each key.

I The reduce function input is:

(Bye, (1))

(Goodbye, (1))

(Hadoop, (1, 1))

(Hello, (1, 1))

(World, (1, 1))
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Word Count in MapReduce - reduce

I The reduce function sums the numbers in the list for each key and outputs (word,
count) pairs.

I The output of the reduce function is the output of the MapReduce job:

(Bye, 1)

(Goodbye, 1)

(Hadoop, 2)

(Hello, 2)

(World, 2)
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Dataflow Programming Model

I Acyclic data flow from stable storage to stable storage.
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Spark
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Spark Applications Architecture

I Spark applications consist of
• A driver process
• A set of executor processes

[M. Zaharia et al., Spark: The Definitive Guide, O’Reilly Media, 2018]
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Driver Process

I The heart of a Spark application

I Sits on a node in the cluster

I Runs the main() function

I Responsible for three things:
• Maintaining information about the Spark application
• Responding to a user’s program or input
• Analyzing, distributing, and scheduling work across the executors
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Executors

I Responsible for two things:
• Executing code assigned to it by the driver
• Reporting the state of the computation on that executor back to the driver
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SparkSession and SparkContext

I Main entry point to Spark functionality.

I SparkSession is available in console shell as spark.

I SparkContext is available in console shell as sc.

// spark session

spark = SparkSession.builder.master(master).appName(appName).getOrCreate()

// spark context

val conf = new SparkConf().setMaster(master).setAppName(appName)

sc = new SparkContext(conf)
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SparkSession vs. SparkContext

I Prior to Spark 2.0.0, a the spark driver program uses SparkContext to connect to
the cluster.

I In order to use APIs of SQL, Hive and streaming, separate SparkContexts should
to be created.

I SparkSession provides access to all the spark functionalities that SparkContext

does, e.g., SQL, Hive and streaming.

I SparkSession internally has a SparkContext for actual computation.
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Programming Model
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Spark Programming Model

I Job is described based on directed acyclic graphs (DAG) data flow.

I A data flow is composed of any number of data sources, operators, and data sinks
by connecting their inputs and outputs.

I Parallelizable operators
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Resilient Distributed Datasets (RDD) (1/3)

I A distributed memory abstraction.

I Immutable collections of objects spread across a cluster.
• Like a LinkedList <MyObjects>
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Resilient Distributed Datasets (RDD) (2/3)

I An RDD is divided into a number of partitions, which are atomic pieces of information.

I Partitions of an RDD can be stored on different nodes of a cluster.
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Resilient Distributed Datasets (RDD) (3/3)

I RDDs were the primary API in the Spark 1.x series.

I They are not commonly used in the Spark 2.x series.

I Virtually all Spark code you run, compiles down to an RDD.
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Types of RDDs

I Two types of RDDs:
• Generic RDD
• Key-value RDD

I Both represent a collection of objects.

I Key-value RDDs have special operations, such as aggregation, and a concept of
custom partitioning by key.
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Creating RDDs
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Creating RDDs - Parallelized Collections

I Use the parallelize method on a SparkContext.

I This turns a single node collection into a parallel collection.

I You can also explicitly state the number of partitions.

I In the console shell, you can either use sc or spark.sparkContext

val numsCollection = Array(1, 2, 3)

val nums = sc.parallelize(numsCollection)

val wordsCollection = "take it easy, this is a test".split(" ")

val words = spark.sparkContext.parallelize(wordsCollection, 2)
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Creating RDDs - External Datasets

I Create RDD from an external storage.
• E.g., local file system, HDFS, Cassandra, HBase, Amazon S3, etc.

I Text file RDDs can be created using textFile method.

val myFile1 = sc.textFile("file.txt")

val myFile2 = sc.textFile("hdfs://namenode:9000/path/file")

52 / 177



RDD Operations
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RDD Operations

I RDDs support two types of operations:

• Transformations: allow us to build the logical plan

• Actions: allow us to trigger the computation
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Transformations
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Transformations

I Create a new RDD from an existing one.

I All transformations are lazy.
• Not compute their results right away.
• Remember the transformations applied to the base dataset (lineage).
• They are only computed when an action requires a result to be returned to the driver

program.
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Lineage

I Lineage: transformations used to build an
RDD.

I RDDs are stored as a chain of objects cap-
turing the lineage of each RDD.

val file = sc.textFile("hdfs://...")

val sics = file.filter(_.contains("SICS"))

val cachedSics = sics.cache()

val ones = cachedSics.map(_ => 1)

val count = ones.reduce(_+_)
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Generic RDD Transformations (1/3)

I distinct removes duplicates from the RDD.

I filter returns the RDD records that match some predicate function.

val words = sc.parallelize("this it easy, this is a test".split(" "))

val distinctWords = words.distinct()

// a, this, is, easy,, test, it

val nums = sc.parallelize(Array(1, 2, 3))

val even = nums.filter(x => x % 2 == 0)

// 2

def startsWithT(individual:String) = { individual.startsWith("t") }

val tWordList = words.filter(word => startsWithT(word))

// take, this, test
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Generic RDD Transformations (2/3)

I map and flatMap apply a given function on
each RDD record independently.

val nums = sc.parallelize(Array(1, 2, 3))

val squares = nums.map(x => x * x)

// 1, 4, 9

val words = sc.parallelize("take it easy, this is a test".split(" "))

val tWords = words.map(word => (word, word.startsWith("t")))

// (take,true), (it,false), (easy,,false), (this,true), (is,false), (a,false), (test,true)

val chars = words.flatMap(word => word.toSeq)

// t, a, k, e, i, t, e, a, s, y, ,, t, h, i, s, i, s, a, t, e, s, t
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Generic RDD Transformations (3/3)

I sortBy sorts an RDD records.

val words = sc.parallelize("take it easy, this is a test".split(" "))

val sortedWords = words.sortBy(word => word.length())

// a, it, is, take, this, test, easy,
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Key-Value RDD Transformations - Basics (1/2)

I In a (k, v) pairs, k is is the key, and v is the value.

I To make a key-value RDD:
• map over your current RDD to a basic key-value structure.
• Use the keyBy to create a key from the current value.
• Use the zip to zip together two RDD.

val numRange = sc.parallelize(0 to 6)

val words = sc.parallelize("take it easy, this is a test".split(" "))

val keyword1 = words.map(word => (word.toLowerCase, 1))

// (take,1), (it,1), (easy,,1), (this,1), (is,1), (a,1), (test,1)

val keyword2 = words.keyBy(word => word.toLowerCase.toSeq(0).toString)

// (t,take), (i,it), (e,easy,), (t,this), (i,is), (a,a), (t,test)

val keyword3 = words.zip(numRange)

// (take,0), (it,1), (easy,,2), (this,3), (is,4), (a,5), (test,6)
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Key-Value RDD Transformations - Basics (2/2)

I keys and values extract keys and values, respectively.

I lookup looks up the values for a particular key with an RDD.

I mapValues maps over values.

val words = sc.parallelize("take it easy, this is a test".split(" "))

val keyword = words.keyBy(word => word.toSeq(0).toString)

// (t,take), (i,it), (e,easy,), (t,this), (i,is), (a,a), (t,test)

val k = keyword.keys

val v = keyword.values

val tValues = keyword.lookup("t")

// take, this, test

val mapV = keyword.mapValues(word => word.toUpperCase)

// (t,TAKE), (i,IT), (e,EASY,), (t,THIS), (i,IS), (a,A), (t,TEST)
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Key-Value RDD Transformations - Aggregation

I Aggregate the values associated with each key.

val words = sc.parallelize("take it easy, this is a test".split(" "))

val chars = words.flatMap(word => word.toSeq)

val kvChars = chars.map(letter => (letter, 1))

// (t,1), (a,1), (k,1), (e,1), (i,1), (t,1), (e,1), (a,1), (s,1), (y,1), (,,1), ...

def addFunc(left:Int, right:Int) = left + right

val grpChar = kvChars.groupByKey().map(row => (row._1, row._2.reduce(addFunc)))

// (t,5), (h,1), (,,1), (e,3), (a,3), (i,3), (y,1), (s,4), (k,1))

val redChar = kvChars.reduceByKey(addFunc)

// (t,5), (h,1), (,,1), (e,3), (a,3), (i,3), (y,1), (s,4), (k,1))
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Key-Value RDD Transformations - Join

I join performs an inner-join on the key.

I fullOtherJoin, leftOuterJoin, rightOuterJoin,
and cartesian.

val words = sc.parallelize("take it easy, this is a test".split(" "))

val chars = words.flatMap(word => word.toSeq)

val distinctChars = chars.distinct

val keyedChars = distinctChars.map(c => (c, new Random().nextInt(10)))

// (t,4), (h,6), (,,9), (e,8), (a,3), (i,5), (y,2), (s,7), (k,0)

val kvChars = chars.map(letter => (letter, 1))

// (t,1), (a,1), (k,1), (e,1), (i,1), (t,1), (e,1), (a,1), (s,1), (y,1), (,,1), ...

val joinedChars = kvChars.join(keyedChars)

// (t,(1,4)), (t,(1,4)), (t,(1,4)), (t,(1,4)), (t,(1,4)), (h,(1,6)), (,,(1,9)), (e,(1,8)), ...
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Actions
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Actions

I Transformations allow us to build up our logical transformation plan.

I We run an action to trigger the computation.
• Instructs Spark to compute a result from a series of transformations.

I There are three kinds of actions:
• Actions to view data in the console
• Actions to collect data to native objects in the respective language
• Actions to write to output data sources
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RDD Actions (1/6)

I collect returns all the elements of the RDD as an array at the driver.

I first returns the first value in the RDD.

val nums = sc.parallelize(Array(1, 2, 3))

nums.collect()

// Array(1, 2, 3)

nums.first()

// 1
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RDD Actions (2/6)

I take returns an array with the first n elements of the RDD.

I Variations on this function: takeOrdered and takeSample.

val words = sc.parallelize("take it easy, this is a test".split(" "))

words.take(5)

// Array(take, it, easy,, this, is)

words.takeOrdered(5)

// Array(a, easy,, is, it, take)

val withReplacement = true

val numberToTake = 6

val randomSeed = 100L

words.takeSample(withReplacement, numberToTake, randomSeed)

// Array(take, it, test, this, test, take)
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RDD Actions (3/6)

I count returns the number of elements in the dataset.

I countByValue counts the number of values in a given RDD.

I countByKey returns a hashmap of (K, Int) pairs with the count of each key.
• Only available on key-valye RDDs, i.e., (K, V)

val words = sc.parallelize("take it easy, this is a test, take it easy".split(" "))

words.count()

// 10

words.countByValue()

// Map(this -> 1, is -> 1, it -> 2, a -> 1, easy, -> 1, test, -> 1, take -> 2, easy -> 1)
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RDD Actions (4/6)

I max and min return the maximum and minimum values, respectively.

val nums = sc.parallelize(1 to 20)

val maxValue = nums.max()

// 20

val minValue = nums.min()

// 1
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RDD Actions (5/6)

I reduce aggregates the elements of the dataset using a given function.

I The given function should be commutative and associative so that it can be computed
correctly in parallel.

sc.parallelize(1 to 20).reduce(_ + _)

// 210

def wordLengthReducer(leftWord:String, rightWord:String): String = {

if (leftWord.length > rightWord.length)

return leftWord

else

return rightWord

}

words.reduce(wordLengthReducer)

// easy,
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RDD Actions (6/6)

I saveAsTextFile writes the elements of an RDD as a text file.
• Local filesystem, HDFS or any other Hadoop-supported file system.

I saveAsObjectFile explicitly writes key-value pairs.

val words = sc.parallelize("take it easy, this is a test".split(" "))

words.saveAsTextFile("file:/tmp/words")
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Example

val textFile = sc.textFile("hdfs://...")

val words = textFile.flatMap(line => line.split(" "))

val ones = words.map(word => (word, 1))

val counts = ones.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")
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Cache and Checkpoints
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Caching

I When you cache an RDD, each node stores any partitions of it that it computes in
memory.

I An RDD that is not cached is re-evaluated each time an action is invoked on that
RDD.

I A node reuses the cached RDD in other actions on that dataset.

I There are two functions for caching an RDD:
• cache caches the RDD into memory
• persist(level) can cache in memory, on disk, or off-heap memory

val words = sc.parallelize("take it easy, this is a test".split(" "))

words.cache()
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Checkpointing

I checkpoint saves an RDD to disk.

I Checkpointed data is not removed after SparkContext is destroyed.

I When we reference a checkpointed RDD, it will derive from the checkpoint instead
of the source data.

val words = sc.parallelize("take it easy, this is a test".split(" "))

sc.setCheckpointDir("/path/checkpointing")

words.checkpoint()
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Spark SQL
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Motivation
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Spark and Spark SQL
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Structured Data vs. RDD (1/2)

I case class Account(name: String, balance: Double, risk: Boolean)

I RDD[Account]

I RDDs don’t know anything about the schema of the data it’s dealing with.
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Structured Data vs. RDD (2/2)

I case class Account(name: String, balance: Double, risk: Boolean)

I RDD[Account]

I A database/Hive sees it as a columns of named and typed values.
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DataFrames and DataSets

I Spark has two notions of structured collections:
• DataFrames
• Datasets

I They are distributed table-like collections with well-defined rows and columns.

I They represent immutable lazily evaluated plans.

I When an action is performed on them, Spark performs the actual transformations
and return the result.
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DataFrame

I Consists of a series of rows and a number of columns.

I Equivalent to a table in a relational database.

I Spark + RDD: functional transformations on partitioned collections of objects.

I SQL + DataFrame: declarative transformations on partitioned collections of tuples.
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Creating a DataFrame

I Two ways to create a DataFrame:

1. From an RDD
2. From raw data sources
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Creating a DataFrame - From an RDD

I The schema automatically inferred.

I You can use toDF to convert an RDD to DataFrame.

val tupleRDD = sc.parallelize(Array(("seif", 65, 0), ("amir", 40, 1)))

val tupleDF = tupleRDD.toDF("name", "age", "id")

I If RDD contains case class instances, Spark infers the attributes from it.

case class Person(name: String, age: Int, id: Int)

val peopleRDD = sc.parallelize(Array(Person("seif", 65, 0), Person("amir", 40, 1)))

val peopleDF = peopleRDD.toDF()
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Creating a DataFrame - From Data Source

I Data sources supported by Spark.
• CSV, JSON, Parquet, ORC, JDBC/ODBC connections, Plain-text files
• Cassandra, HBase, MongoDB, AWS Redshift, XML, etc.

val peopleJson = spark.read.format("json").load("people.json")

val peopleCsv = spark.read.format("csv")

.option("sep", ";")

.option("inferSchema", "true")

.option("header", "true")

.load("people.csv")
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DataFrame Transformations (1/4)

I Add and remove rows or columns

I Transform a row into a column (or vice versa)

I Change the order of rows based on the values in columns

[M. Zaharia et al., Spark: The Definitive Guide, O’Reilly Media, 2018]
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DataFrame Transformations (2/4)

I select and selectExpr allow to do the DataFrame equivalent of SQL queries on
a table of data.

// select

people.select("name", "age", "id").show(2)

people.select(col("name"), expr("age + 3")).show()

people.select(expr("name AS username")).show(2)

// selectExpr

people.selectExpr("*", "(age < 20) as teenager").show()

people.selectExpr("avg(age)", "count(distinct(name))", "sum(id)").show()
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DataFrame Transformations (3/4)

I filter and where both filter rows.

I distinct can be used to extract unique rows.

people.filter(col("age") < 20).show()

people.where("age < 20").show()

people.select("name").distinct().count()
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DataFrame Transformations (4/4)

I withColumn adds a new column to a DataFrame.

I withColumnRenamed renames a column.

I drop removes a column.

// withColumn

people.withColumn("teenager", expr("age < 20")).show()

// withColumnRenamed

people.withColumnRenamed("name", "username").columns

// drop

people.drop("name").columns
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DataFrame Actions

I Like RDDs, DataFrames also have their own set of actions.

I collect: returns an array that contains all of rows in this DataFrame.

I count: returns the number of rows in this DataFrame.

I first and head: returns the first row of the DataFrame.

I show: displays the top 20 rows of the DataFrame in a tabular form.

I take: returns the first n rows of the DataFrame.
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Aggregation
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Aggregation

I In an aggregation you specify
• A key or grouping
• An aggregation function

I The given function must produce one result for each group.
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Grouping Types

I Summarizing a complete DataFrame

I Group by

I Windowing
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Summarizing a Complete DataFrame Functions (1/2)

I count returns the total number of values.

I countDistinct returns the number of unique groups.

I first and last return the first and last value of a DataFrame.

import org.apache.spark.sql.functions._

val people = spark.read.format("json").load("people.json")

people.selectExpr(count("age")).show()

people.select(countDistinct("name")).show()

people.select(first("name"), last("age")).show()
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Summarizing a Complete DataFrame Functions (2/2)

I min and max extract the minimum and maximum values from a DataFrame.

I sum adds all the values in a column.

I avg calculates the average.

import org.apache.spark.sql.functions._

val people = spark.read.format("json").load("people.json")

people.select(min("name"), max("age"), max("id")).show()

people.select(sum("age")).show()

people.select(avg("age")).show()
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Grouping Types

I Summarizing a complete DataFrame

I Group by

I Windowing
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Group By (1/3)

I Perform aggregations on groups in the data.

I Typically on categorical data.

I We do this grouping in two phases:

1. Specify the column(s) on which we would like to group.
2. Specify the aggregation(s).
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Group By (2/3)

I Grouping with expressions
• Rather than passing that function as an expression into a select statement, we specify

it as within agg.

val people = spark.read.format("json").load("people.json")

people.groupBy("name").agg(count("age").alias("ageagg")).show()
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Group By (3/3)

I Grouping with Maps
• Specify transformations as a series of Maps
• The key is the column, and the value is the aggregation function (as a string).

val people = spark.read.format("json").load("people.json")

people.groupBy("name").agg("age" -> "count", "age" -> "avg", "id" -> "max").show()
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Grouping Types

I Summarizing a complete DataFrame

I Group by

I Windowing
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Windowing (1/2)

I Computing some aggregation on a specific window of data.

I The window determines which rows will be passed in to this function.

I You define them by using a reference to the current data.

I A group of rows is called a frame.

[M. Zaharia et al., Spark: The Definitive Guide, O’Reilly Media, 2018]

105 / 177



Windowing (2/2)

I Unlike grouping, here each row can fall into one or more frames.

import org.apache.spark.sql.expressions.Window

import org.apache.spark.sql.functions.col

val people = spark.read.format("json").load("people.json")

val windowSpec = Window.rowsBetween(-1, 1)

val avgAge = avg(col("age")).over(windowSpec)

people.select(col("name"), col("age"), avgAge.alias("avg_age")).show
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Joins

107 / 177



Joins

I A join goes throught the following steps:
• Compares the value of one or more keys of the left and right datasets.
• Evaluates the result of a join expression.
• Determines whether Spark should bring together the left set of data with the right set

of data.

I Different join types: inner join, outer join, left outer join, right outer join, left semi
join, left anti join, cross join
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Joins Example

val person = Seq(

(0, "Seif", 0),

(1, "Amir", 1),

(2, "Sarunas", 1))

.toDF("id", "name", "group_id")

val group = Seq(

(0, "SICS/KTH"),

(1, "KTH"),

(2, "SICS"))

.toDF("id", "department")
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Joins Example - Inner

val joinExpression = person.col("group_id") === group.col("id")

var joinType = "inner"

person.join(group, joinExpression, joinType).show()

+---+-------+--------+---+----------+

| id| name|group_id| id|department|

+---+-------+--------+---+----------+

| 0| Seif| 0| 0| SICS/KTH|

| 1| Amir| 1| 1| KTH|

| 2|Sarunas| 1| 1| KTH|

+---+-------+--------+---+----------+
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Joins Example - Outer

val joinExpression = person.col("group_id") === group.col("id")

var joinType = "outer"

person.join(group, joinExpression, joinType).show()

+----+-------+--------+---+----------+

| id| name|group_id| id|department|

+----+-------+--------+---+----------+

| 1| Amir| 1| 1| KTH|

| 2|Sarunas| 1| 1| KTH|

|null| null| null| 2| SICS|

| 0| Seif| 0| 0| SICS/KTH|

+----+-------+--------+---+----------+
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Joins Example - Right Outer

val joinExpression = person.col("group_id") === group.col("id")

var joinType = "right_outer"

person.join(group, joinExpression, joinType).show()

+----+-------+--------+---+----------+

| id| name|group_id| id|department|

+----+-------+--------+---+----------+

| 0| Seif| 0| 0| SICS/KTH|

| 2|Sarunas| 1| 1| KTH|

| 1| Amir| 1| 1| KTH|

|null| null| null| 2| SICS|

+----+-------+--------+---+----------+
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SQL
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SQL

I You can run SQL queries on views/tables via the method sql on the SparkSession

object.

spark.sql("SELECT * from people_view").show()

+---+---+-------+

|age| id| name|

+---+---+-------+

| 15| 12|Michael|

| 30| 15| Andy|

| 19| 20| Justin|

| 12| 15| Andy|

| 19| 20| Jim|

| 12| 10| Andy|

+---+---+-------+
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Temporary View

I createOrReplaceTempView creates (or replaces) a lazily evaluated view.

I You can use it like a table in Spark SQL.

I It does not persist to memory unless you cache it.

val people = spark.read.format("json").load("people.json")

people.createOrReplaceTempView("people_view")

val teenagersDF = spark.sql("SELECT name, age FROM people_view WHERE age BETWEEN 13 AND 19").show()
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DataSet
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Untyped API with DataFrame

I DataFrames elements are Rows, which are generic untyped JVM objects.

I Scala compiler cannot type check Spark SQL schemas in DataFrames.

I The following code compiles, but you get a runtime exception.
• id num is not in the DataFrame columns [name, age, id]

// people columns: ("name", "age", "id")

val people = spark.read.format("json").load("people.json")

people.filter("id_num < 20") // runtime exception
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Why DataSet?

I Assume the following example

case class Person(name: String, age: BigInt, id: BigInt)

val peopleRDD = sc.parallelize(Array(Person("seif", 65, 0), Person("amir", 40, 1)))

val peopleDF = peopleRDD.toDF

I Now, let’s use collect to bring back it to the master.

val collectedPeople = peopleDF.collect()

// collectedPeople: Array[org.apache.spark.sql.Row]

I What is in Row?
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Why DataSet?

I To be able to work with the collected values, we should cast the Rows.
• How many columns?
• What types?

// Person(name: Sting, age: BigInt, id: BigInt)

val collectedList = collectedPeople.map {

row => (row(0).asInstanceOf[String], row(1).asInstanceOf[Int], row(2).asInstanceOf[Int])

}

I But, what if we cast the types wrong?

I Wouldn’t it be nice if we could have both Spark SQL optimizations and typesafety?

119 / 177



Why DataSet?

I To be able to work with the collected values, we should cast the Rows.
• How many columns?
• What types?

// Person(name: Sting, age: BigInt, id: BigInt)

val collectedList = collectedPeople.map {

row => (row(0).asInstanceOf[String], row(1).asInstanceOf[Int], row(2).asInstanceOf[Int])

}

I But, what if we cast the types wrong?

I Wouldn’t it be nice if we could have both Spark SQL optimizations and typesafety?

119 / 177



DataSet

I Datasets can be thought of as typed distributed collections of data.

I Dataset API unifies the DataFrame and RDD APls.

I You can consider a DataFrame as an alias for Dataset[Row], where a Row is a
generic untyped JVM object.

type DataFrame = Dataset[Row]

[http://why-not-learn-something.blogspot.com/2016/07/apache-spark-rdd-vs-dataframe-vs-dataset.html]
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Creating DataSets

I To convert a sequence or an RDD to a Dataset, we can use toDS().

I You can call as[SomeCaseClass] to convert the DataFrame to a Dataset.

case class Person(name: String, age: BigInt, id: BigInt)

val personSeq = Seq(Person("Max", 33, 0), Person("Adam", 32, 1))

val ds1 = personSeq.toDS()

val ds2 = sc.parallelize(personSeq).toDS

val ds3 = spark.read.format("json").load("people.json").as[Person]
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DataSet Transformations

I Transformations on Datasets are the same as those that we had on DataFrames.

I Datasets allow us to specify more complex and strongly typed transformations.

case class Person(name: String, age: BigInt, id: BigInt)

val people = spark.read.format("json").load("people.json").as[Person]

people.filter(x => x.age < 40).show()

people.map(x => (x.name, x.age + 5, x.id)).show()
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GraphX
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Graph Algorithms Challenges

I Difficult to extract parallelism based on partitioning of the data.

I Difficult to express parallelism based on partitioning of computation.
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Graph-Parallel Processing Model
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Data-Parallel vs. Graph-Parallel Computation
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Motivation (2/3)

I Graph-parallel computation: restricting the types of computation to achieve perfor-
mance.

I The same restrictions make it difficult and inefficient to express many stages in a
typical graph-analytics pipeline.
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Motivation (3/3)
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Motivation (3/3)
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I Unifies data-parallel and graph-parallel systems.

I Tables and Graphs are composable views of the same physical data.
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GraphX

I GraphX is the library to perform graph-parallel processing in Spark.

I In-memory caching.

I Lineage-based fault tolerance.
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The Property Graph Data Model

I Spark represent graph structured data as a property graph.

I It is logically represented as a pair of vertex and edge property collections.
• VertexRDD and EdgeRDD

// VD: the type of the vertex attribute

// ED: the type of the edge attribute

class Graph[VD, ED] {

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]

}
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The Vertex Collection

I VertexRDD: contains the vertex properties keyed by the vertex ID.

class Graph[VD, ED] {

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]

}

// VD: the type of the vertex attribute

abstract class VertexRDD[VD] extends RDD[(VertexId, VD)]
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The Edge Collection

I EdgeRDD: contains the edge properties keyed by the source and destination vertex
IDs.

class Graph[VD, ED] {

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]

}

// ED: the type of the edge attribute

case class Edge[ED](srcId: VertexId, dstId: VertexId, attr: ED)

abstract class EdgeRDD[ED] extends RDD[Edge[ED]]
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The Triplet Collection

I The triplets collection consists of each edge and its corresponding source and desti-
nation vertex properties.

I It logically joins the vertex and edge properties: RDD[EdgeTriplet[VD, ED]].

I The EdgeTriplet class extends the Edge class by adding the srcAttr and dstAttr

members, which contain the source and destination properties respectively.
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Building a Property Graph

import org.apache.spark.graphx._

import org.apache.spark.rdd.RDD

val users: RDD[(VertexId, (String, String))] = sc.parallelize(Array((3L, ("rxin", "student")),

(7L, ("jgonzal", "postdoc")), (5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))

val relationships: RDD[Edge[String]] = sc.parallelize(Array(Edge(3L, 7L, "collab"),

Edge(5L, 3L, "advisor"), Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi"), Edge(5L, 1L, "-")))

val defaultUser = ("John Doe", "Missing")

val graph: Graph[(String, String), String] = Graph(users, relationships, defaultUser)
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Graph Operators

I Information about the graph

I Property operators

I Structural operators

I Joins

I Aggregation

I ...
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Information About The Graph (1/2)

I Information about the graph

val numEdges: Long

val numVertices: Long

val inDegrees: VertexRDD[Int]

val outDegrees: VertexRDD[Int]

val degrees: VertexRDD[Int]

I Views of the graph as collections

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]

val triplets: RDD[EdgeTriplet[VD, ED]]
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Information About The Graph (2/2)

// Constructed from above

val graph: Graph[(String, String), String]

// Count all users which are postdocs

graph.vertices.filter { case (id, (name, pos)) => pos == "postdoc" }.count

// Count all the edges where src > dst

graph.edges.filter(e => e.srcId > e.dstId).count
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Property Operators

I Transform vertex and edge attributes

I Each of these operators yields a new graph with the vertex or edge properties modified
by the user defined map function.

def mapVertices[VD2](map: (VertexId, VD) => VD2): Graph[VD2, ED]

def mapEdges[ED2](map: Edge[ED] => ED2): Graph[VD, ED2]

def mapTriplets[ED2](map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]

val relations: RDD[String] = graph.triplets.map(triplet =>

triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1)

relations.collect.foreach(println)

val newGraph = graph.mapTriplets(triplet =>

triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1)

newGraph.edges.collect.foreach(println)
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Structural Operators

I reverse returns a new graph with all the edge directions reversed.

I subgraph takes vertex/edge predicates and returns the graph containing only the
vertices/edges that satisfy the given predicate.

I mask constructs a subgraph of the input graph.

def reverse: Graph[VD, ED]

def subgraph(epred: EdgeTriplet[VD, ED] => Boolean, vpred: (VertexId, VD) => Boolean):

Graph[VD, ED]

def mask[VD2, ED2](other: Graph[VD2, ED2]): Graph[VD, ED]

// Remove missing vertices as well as the edges to connected to them

val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")

graph.vertices.collect.foreach(println)

validGraph.vertices.collect.foreach(println)

// Restrict the answer to the valid subgraph

val validUserGraph = graph.mask(validGraph)
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Join Operators

I joinVertices joins the vertices with the input RDD.
• Returns a new graph with the vertex properties obtained by applying the user defined
map function to the result of the joined vertices.

• Vertices without a matching value in the RDD retain their original value.

def joinVertices[U](table: RDD[(VertexId, U)])(map: (VertexId, VD, U) => VD): Graph[VD, ED]

val rdd: RDD[(VertexId, String)] = sc.parallelize(Array((3L, "phd")))

val joinedGraph = graph.joinVertices(rdd)((id, user, role) => (user._1, role + " " + user._2))

joinedGraph.vertices.collect.foreach(println)
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Aggregation (1/2)

I aggregateMessages applies a user defined sendMsg function to each edge triplet
in the graph and then uses the mergeMsg function to aggregate those messages at
their destination vertex.

def aggregateMessages[Msg: ClassTag](

sendMsg: EdgeContext[VD, ED, Msg] => Unit, // map

mergeMsg: (Msg, Msg) => Msg, // reduce

tripletFields: TripletFields = TripletFields.All):

VertexRDD[Msg]
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Aggregation (2/2)

// count and list the name of friends of each user

val profs: VertexRDD[(Int, String)] = validUserGraph.aggregateMessages[(Int, String)](

// map

triplet => {

triplet.sendToDst((1, triplet.srcAttr._1))

},

// reduce

(a, b) => (a._1 + b._1, a._2 + " " + b._2)

)

profs.collect.foreach(println)
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Spark Streaming

146 / 177



147 / 177



Stream Processing (1/4)

I Stream processing is the act of continuously incorporating new data to compute a
result.
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Stream Processing (2/4)

I The input data is unbounded.
• A series of events, no predetermined beginning or end.

• E.g., credit card transactions, clicks on a website, or sensor readings from IoT devices.
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Stream Processing (3/4)

I User applications can then compute various queries over this stream of events.
• E.g., tracking a running count of each type of event or aggregating them into hourly

windows
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Stream Processing (4/4)

I Database Management Systems (DBMS): data-at-rest analytics
• Store and index data before processing it.
• Process data only when explicitly asked by the users.

I Stream Processing Systems (SPS): data-in-motion analytics
• Processing information as it flows, without storing them persistently.
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Streaming Data Processing Patterns

I Micro-batch systems
• Batch engines
• Slicing up the unbounded data into a sets of bounded data, then process each batch.

I Continuous processing-based systems
• Each node in the system continually listens to messages from other nodes and outputs

new updates to its child nodes.
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Spark Streaming

I Run a streaming computation as a series of very small, deterministic batch jobs.

• Chops up the live stream into batches of X seconds.

• Treats each batch as RDDs and processes them using RDD operations.

• Discretized Stream Processing (DStream)
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DStream (1/2)

I DStream: sequence of RDDs representing a stream of data.
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DStream (2/2)

I Any operation applied on a DStream translates to operations on the underlying RDDs.
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StreamingContext

I StreamingContext is the main entry point of all Spark Streaming functionality.

I The second parameter, Seconds(1), represents the time interval at which streaming
data will be divided into batches.

val conf = new SparkConf().setAppName(appName).setMaster(master)

val ssc = new StreamingContext(conf, Seconds(1))

I It can also be created from an existing SparkContext object.

val sc = ... // existing SparkContext

val ssc = new StreamingContext(sc, Seconds(1))
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Input Operations

I Every input DStream is associated with a Receiver object.
• It receives the data from a source and stores it in Spark’s memory for processing.

I Three categories of streaming sources:

1. Basic sources directly available in the StreamingContext API, e.g., file systems, socket
connections.

2. Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter.

3. Custom sources, e.g., user-provided sources.
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Input Operations - Basic Sources

I Socket connection
• Creates a DStream from text data received over a TCP socket connection.

ssc.socketTextStream("localhost", 9999)

I File stream
• Reads data from files.

streamingContext.fileStream[KeyClass, ValueClass, InputFormatClass](dataDirectory)

streamingContext.textFileStream(dataDirectory)
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Input Operations - Advanced Sources

I Connectors with external sources

I Twitter, Kafka, Flume, Kinesis, ...

TwitterUtils.createStream(ssc, None)

KafkaUtils.createStream(ssc, [ZK quorum], [consumer group id], [number of partitions])
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Transformations (1/4)

I Transformations on DStreams are still lazy!

I Now instead, computation is kicked off explicitly by a call to the start() method.

I DStreams support many of the transformations available on normal Spark RDDs.
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Transformations (2/4)

I map
• Returns a new DStream by passing each element of the source DStream through a

given function.

I flatMap
• Similar to map, but each input item can be mapped to 0 or more output items.

I filter
• Returns a new DStream by selecting only the records of the source DStream on which

func returns true.
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Transformations (3/4)

I count
• Returns a new DStream of single-element RDDs by counting the number of elements

in each RDD of the source DStream.

I union
• Returns a new DStream that contains the union of the elements in two DStreams.
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Transformations (4/4)

I reduce
• Returns a new DStream of single-element RDDs by aggregating the elements in each

RDD using a given function.

I reduceByKey
• Returns a new DStream of (K, V) pairs where the values for each key are aggregated

using the given reduce function.

I countByValue
• Returns a new DStream of (K, Long) pairs where the value of each key is its

frequency in each RDD of the source DStream.
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Window Operations (1/3)

I Spark provides a set of transformations that apply to a over a sliding window of data.

I A window is defined by two parameters: window length and slide interval.

I A tumbling window effect can be achieved by making slide interval = window length
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Window Operations (2/3)

I window(windowLength, slideInterval)
• Returns a new DStream which is computed based on windowed batches.

I countByWindow(windowLength, slideInterval)
• Returns a sliding window count of elements in the stream.

I reduceByWindow(func, windowLength, slideInterval)
• Returns a new single-element DStream, created by aggregating elements in the stream

over a sliding interval using func.
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Window Operations (3/3)

I reduceByKeyAndWindow(func, windowLength, slideInterval)
• Called on a DStream of (K, V) pairs.
• Returns a new DStream of (K, V) pairs where the values for each key are aggregated

using function func over batches in a sliding window.

I countByValueAndWindow(windowLength, slideInterval)
• Called on a DStream of (K, V) pairs.
• Returns a new DStream of (K, Long) pairs where the value of each key is its

frequency within a sliding window.
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Word Count in Spark Streaming
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Word Count in Spark Streaming (1/6)

I First we create a StreamingContex

import org.apache.spark._

import org.apache.spark.streaming._

// Create a local StreamingContext with two working threads and batch interval of 1 second.

val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))
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Word Count in Spark Streaming (2/6)

I Create a DStream that represents streaming data from a TCP source.

I Specified as hostname (e.g., localhost) and port (e.g., 9999).

val lines = ssc.socketTextStream("localhost", 9999)
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Word Count in Spark Streaming (3/6)

I Use flatMap on the stream to split the records text to words.

I It creates a new DStream.

val words = lines.flatMap(_.split(" "))
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Word Count in Spark Streaming (4/6)

I Map the words DStream to a DStream of (word, 1).

I Get the frequency of words in each batch of data.

I Finally, print the result.

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

wordCounts.print()
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Word Count in Spark Streaming (5/6)

I Start the computation and wait for it to terminate.

// Start the computation

ssc.start()

// Wait for the computation to terminate

ssc.awaitTermination()
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Word Count in Spark Streaming (6/6)

val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

wordCounts.print()

ssc.start()

ssc.awaitTermination()
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Word Count with Window

val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val windowedWordCounts = pairs.reduceByKeyAndWindow(_ + _, Seconds(30), Seconds(10))

windowedWordCounts.print()

ssc.start()

ssc.awaitTermination()

174 / 177



Summary
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Questions?
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